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Methods of analyzing linear time-optimal control problems are adapted to the
analysis of the extremal problem II Llo 1100 = inffEu II Lilloo; L is a linear nth
order differential operator and U is a flat in the Sobolev space Wn,oo[a, b]. Existence
and uniqueness of solutions are established for particular U determined by inter­
polation conditions at a and b. Solutions are characterized as perfect splines,
enabling one to obtain solutions of perfect-spline interpolation problems. Further,
existence of perfect-spline solutions is established for extremal and interpolation
problems determined by more general flats U.

1. INTRODUCTION

Glaeser [3] sparked a current surge of interest in perfect-spline functions
and related Leo extremal problems. The present paper is directly concerned
with establishing results like those related in Glaeser's pioneering work, but
with generalizations of the characterizing extremal problems such as those
considered by Fisher and Jerome [1,2]. We appeal to the strong connections
between the extremal problems and problems of optimal control to draw on
results and methods of analysis from control theory for the consideration of
the Lao extremal problems and the characterization of their solutions as
perfect splines. While control theory itself is a deep and rich area of analysis,
the results and methods that we borrow from it are elementary ones. With
these relatively simple methods we can still establish generalizations of
certain basic and nontrivial results concerning perfect splines.

Glaeser's first results are related in a paper by Schoenberg [10]. A real­
valued function f(t) defined on the interval [a, b] is a polynomial spline
function of degree n if there are points a = to < tl < ... < tic < tic+! c= b
such that: (i) f is a polynomial of degree n on (tj , tj+!) for j = 0,... , k, and
(ii)fE Cn - I [a, b]. The points tk E (a, b) are the knots off Such a functionfis
called a perfect spline if, in addition: (iii) I jlnl(t)1 is constant on [a, b] for
t oF t1 , ... , tk • There are two theorems of Glaeser with which we are princi­
pally concerned.
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THEOREM. If 2n real values x~), X\"l for v = 1,... , n are specified, then the
2-point Hermite interpolation problem pVl(a) = x~+l), pVl(b) = xiVH

) for
v = 0'00" n - 1 has a unique solution fo that is a perfect spline of degree n
having fewer than n knots in (a, b).

In relating this unique perfect spline fo to an extremal problem, Glaeser
proved the following result.

THEOREM. The perfect spline fo of the theorem above is the unique function
that minimizes II pn) II", among allfunctionsffor which pVl(a) = X~v+l) ,jlvl(b) =
xiVH )for v = 0'00" n - landfor whichflvl for v = 0'00" n - 1 are absolutely
continuous on [a, b].

Significant extensions of these early results were announced by Karlin [6].
Two of Karlin's results are in the same direction as Glaeser's theorems, but
more general interpolation conditions than before are considered for the
interpolation and extremal problems. The order of Karlin's results is the
same as Glaeser's; first, existence of a perfect spline solution to the inter­
polation problem is stated and then this perfect spline is claimed to
minimize II fIn) 1100 among all f satisfying the imposed conditions. Further,
the sharp bounds on the number of knots of an interpolating perfect spline
carryover to the more general interpolation conditions. However, simple
examples show that the solutions under Karlin's conditions need not be
unique (see [1], for example).

The ways in which Fisher and Jerome have generalized both Glaeser's
and Karlin's conditions on the extremal and interpolation problems deter­
mine the direction that we adopt here. First, in [I] they consider the problem
of existence of a functionfo that minimizes II Lflloo on an interval [a, b], where:
(i) L is a nonsingular linear differential operator of order n, (ii) functions f and
their first (n - 1) derivatives are absolutely continuous on [a, b], and (iii) f
satisfies very general interpolation conditions at fixed points in the interval.
These generalizations of the interpolation conditions are detailed in Section 4,
where we relate our new results to extensions of those obtained by Fisher and
Jerome. In [2], they show that "perfect-spline" solutions of the extremal
problem exist, and thus obtain perfect-spline solutions of the interpolation
problem related to the extremal problem. Perfect splines in this setting are
functions f for which Lfhas only a finite number of discontinuities in [a, b]
and I Lf 1is a constant a.e. The case L = Dn corresponds to the problems
considered by Glaeser and Karlin. Note that the order of presentation is
reversed by Fisher and Jerome, first treating the extremal problem and then
treating the perfect-spline interpolation problem. This direction is also
exploited in the present analysis.
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Schoenberg [10] has indicated relationships between perfect-spline
problems and optimal control. Schoenberg redevelops a result of Louboutin
[8] in giving an explicit expression for the interpolating perfect spline des­
cribed in Glaeser's first theorem for the case a = -I, b = 1, xi;') = 0 for
v = 1,... , n, xiI) = 1 and xiv) = 0 for v = 2, ... , n. Then appealing to the
extremal property of this spline elicited in Glaeser's second theorem,
Schoenberg uses it to construct a solution to a time-optimal control problem
for a system governed by the operator Dn. Thus, Schoenberg brings analysis
of perfect splines to bear on a problem in control. We reverse this process in
drawing on methods from control to treat perfect splines and their inter­
polating and extremal properties.

The paper by Mangasarian and Schumaker [9] relates in spirit to the
present one. They invoke results and methods from control theory for the
analysis of L p extremal problems, 1 < p < 00. In so doing, they convincingly
demonstrate the power of this approach to extremal properties of splines and
they anticipate the relevance of control methods to L oo extremal problems.

Problem formulations and main results are given in the next section. The
proofs are developed in Section 3. The last section relates these results to an
extension of earlier work by Fisher and Jerome [2].

2. EXTREMAL PROBLEMS AND RESULTS

On a fixed finite interval [a, b] of the line, consider functions f in the
Sobolev space Wn.oo ; Wn,oo = {f E R[a.b]: jlv) is absolutely continuous for
v = 0,... , n - 1 and II j<n) 1100 is finite}, where II . 1100 is the essential sup norm.

Let x~v), xiv) for v = 1, ... , n be 2n specified real values and define the subset
U of Wn,oo by

U = {IE wn,a;:j<v'(a) = x~v+l),f<v'(b) = xivtl ) for v = 0,... , n - I}.

Let L denote a nonsingular nth order linear differential operator,

n

L = Dn + L all) Dn-v,
v=l

where D is the operator of differentiation. We assume that the coefficient
functions av are in Cn-v[a, b], so that L *, the formal adjoint of L, also exists
as a nonsingular nth order linear differential operator with continuous
coefficients. Explicitly

n

(_l)n L*f= D"f + L (-l)v Dn-v(aJ).
v=l
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Consider L operating on U and define

CXo = inf II Lfll", .
fEU
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(2.1)

Our first concern is to establish the existence offo in U for which the infimum
in (2.1) is attained, i.e., for which

fOE U. (2.2)

In the course of establishing the existence of a solution to Eq. (2.2), we also
obtain characterizations in terms of perfect-spline properties.

We adopt standard extrapolations of notions of polynomial splines and
perfect polynomial splines to define what is meant by "perfect spline" in the
following discussion. In terms of the fixed nth order differential operator L,
we refer to a real-valued functionf on [a, b] as a spline function of degree n if
there are points a = to < t1 < ... < tk < tk~l = b such that

(i) fE W n ,"', and

(ii) Lf assumes a constant value Ui on each interval (ti , ti+!) for j =
0, 1, ... , k. Such points ti in (a, b) are called knots of f A spline f is called
a perfect spline if, in addition,

(iii) I Lfl is constant on [a, b] - {ti};~l'

For some of the characterizations of solutions to (2.2) we impose an
additional assumption concerning the operator L and call this Property T.
The operator L * is said to possess Property T (disconjugacy) if its null space is
spanned by a Tchebycheff system on [a, b]; this means that a nontrivial
solution ep of L *ep = 0 on [a, b] has at most n - 1 zeros in [a, b].

The first result concerns the extremal problem (2.2).

THEOREM 1. There exists a unique function fo in U that satisfies (2.2). The
function fo is a perfect spline on [a, b]; that is, there are k ;;?: 0 interior points
t1 < t2 < ... < tk in (a, b) such that Lfo(t) exists for all t in [a, b] -{tin~l and
I Lfo I = CXo excepting the points tj • Further, if L * possesses Property T on
[a, b] then k ,,::;; n - I.

Much of the statement of Theorem 1 is included in the previous results of
Fisher and Jerome [2]. It is proven anew in Section 3, since it is an easy by­
product of the methods that lead to new results. In addition to Theorem 1 we
prove the following theorem.

THEOREM 2. Iff in U is a perfect spline with interior knots t1 < ... < tk
in (a, b) and ILf I = cx > CXo , where CXo is given by (2.1), and if L * possesses
Property T on [a, b] then k ;;?: n.
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Theorems 1 and 2 yield an analogue of Glaeser's first theorem concerning
existence and uniqueness of interpolating perfect splines.

THEOREM 3. IfL * possesses Property T on [a, b] then there exists a unique
perfect spline fo in U with fewer than n knots in (a, b).

Finally we address the question of existence of perfect splines in U such as
described in Theorem 2 and we obtain the result that allows the extensions
of earlier work by Fisher and Jerome described in Section 4.

THEOREM 4. If (X > 000 (2.1), then there exists a perfect spline fin U with
ILf I == (X except at the knots off If L * possesses Property T on [a, b] then
such a perfect spline f has at least n knots in (a, b), and there exist exactly two
perfect splines in U that have precisely n knots in (a, b). These two splines are
distinguished by the sign of Lf near a.

The same brand of analysis is used to prove each of these theorems. The
first step is a reformulation of the extremal problem (2.2) in control terms.

3. CONTROL FORMULATION AND PROOFS

The notation and definitions of Section 2 are used in this section.
Consider the differential equation

Lf=u, U E Leo[a, b]. (3.1)

Any solution of (3.1) is a member of wn •ac and, conversely, any function in
Wn •eo satisfies an equation like (3.1). To relate solutions of (3.1) to the subset
U of Wn ."" impose the initial conditions

for v = 0, ... , 11 - 1, (3.2)

where the x~v) are the specified real-values used to describe U. The question
of existence of a solution /0 of the extremal problem (2.2) can be expressed
equivalently as a question of existence of a function (control) Uo in L",[a, b]
for which II UO 1100 = 000 and for which the associated solutionfo of (3.1) and
(3.2) satisfies

for v = 0, ... ,11 - I. (3.3)

We refer to the function u in (3.1) as a control.
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The control problem is more readily analyzed in terms of systems of
equations equivalent to (3.1)-(3.3). Let A(t) be an n x n matrix

°I .tJ
and let B be the column n-vector

B = col(O, 0, ... , 0, I).
The system

X' = A(t) X + Bu, (3.4)

describing an n-vector function X(t) = col(xit), ... , xit)) is equivalent to (3.1)
with the identification fl v) = xv+! , for v = 0, ... , n - I. Denote

where the x~v) and xiv) are the same values that define U. The initial condition
(3.2) associated with (3.1) translates into

X(a) = Xo (3.5)

associated with system (3.4). In the same way, the condition (3.3) on the
state we seek to attain is expressed as

X(b) = Xl' (3.6)

Eqs. (3.4)-(3.6) are equivalent to (3.1)-(3.3) and problem (2.2) may thus be
expressed as follows:

PROBLEM. Does there exist a control Uo in L",[a, b] with II UO II", = 0:0 so
that the solution of (3.4) and (3.5) for u = Uosatisfies (3.6)?

Our affirmative analysis of this question will yield characterizations of
such Uo that we can turn into statements about the perfect-spline nature of
solutions 10 of (2.2). How this will work is probably evident to readers
familiar with fundamentals of control theory. Perfect splines are associated
with controls u of constant absolute value by (3.1), that is, with the so-called
Bang-Bang controls. The existence questions of Theorems I and 4 translate
into questions of attainable states for Bang-Bang controls, and appeal to the
Bang-Bang Principle already yields partial answers to the concerns of these
theorems (see Hermes and LaSalle [5]). The proofs of this section are effec­
tively verifications of this basic principle of control for the system (3.1).
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Now in seeking a control uofor which II uo 1100 = exo we are imposing a power
constraint on the control in (3.4). It is convenient to define two classes of
admissible controls, where power constraints are imposed. Define, for any
ex;?;O

Q ex = {u E Loo[a, b]: II u 1100 ~ ex}
and

Qexo = {u E Loo[a, b]: 1uU)1 = ex a.e. in [a, b]}.

Special interest centers on the classes Q ex°since perfect splines are associated
with controls in this class.

Solutions of (3.4) and (3.5) are conveniently expressed by the variation of
constants formula in terms of a fundamental matrix solution P of the homo­
geneous system X' = AU) x. X is a solution of (3.4) and (3.5) if and only if

X(t) = PU) P-I(a) Xo + pet)rP-I(S) Bu(s) ds. (3.7)
n

To describe attainable states at time b, which Xl should be, define the
attainable sets Olex and OlexO, which are images of Q ex and Qexo in Rn under the
mapping (3.7). Let

Ola = {X(b) E R": X( ) satisfies (3.7) on [a, b] for some u E QJ (3.8)

and

OlexO = {X(b) E R": X( ) satisfies (3.7) on [a, b] for some u E QQO}.

The Bang-Bang Principle, to which we alluded, states otrx = Olexo. Theorem 1
is proven by showing Xl E Ol~ and by invoking necessary conditions on the

o
control Uo E Q~ that drives the system to Xl .

o
We first establish useful properties of the sets otrx • All of these properties

are either proven in [5] or are direct consequences of results established
therein. Brief arguments are presented here in the interest of completeness.

LEMMA 1. The subsets otex of R" given by (3.8) have the following proper­
ties:

(i) Olrx is a compact convex subset of Rn for all ex > 0;

(ii) X is a boundary point of Olex if and only if there is a nonzero vector Y)
such that

x = PCb) P-I(a) Xo +rPCb) P-I(S) Bu*(s) ds (3.9)
a

and
u*(s) = ex sgn[Y)tP(b) P-I(S) B]; (3.10)
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(iii) if ex > 0, then the interior of ota (int ota) is nonempty;

(iv) if 0 ~ ex < fl, then otrx c: int ot{3 ;
(v) with the Hausdorff metric on compact subsets of Rn, the mapping

ex --+ otrx is a continuous set-valued function on [0, (0);

(vi) if ex > 0 and X E int ota , then for some positive S, X E int otrx - 8 •

Remark. In (3.10) YJt denotes the transpose of the vector YJ and sgn ( )
denotes the signum function. In the present analysis we need not be concerned
with its indeterminate value for a zero argument.

Proof (i) Qa is convex and the integral expression in the representation
(3.7) is linear in u. Thus, ota is convex. Also, Qa is a norm-closed ball in
L",[a, b], so it is compact in the weak* topology of L",[a, b]. Eq. (3.7), with
t = b, describes a continuous transformation from L",[a, b] to Rn in the
weak* topology, so the compactness of ota follows from that of Qa •

(ii) Suppose X is a boundary point of ota • Since ota is compact and
convex it has a support plane passing through X [5, p. 35]. There is a nonzero
vector YJ such that 1]t(X - Y) ~ 0 for all Y E ota • Let u* denote a control in
Q rx associated with X (3.9) and let u be arbitrary in Qrx. Using (3.7), the
inequality YJt(X - Y) ~ 0 implies

f [YJtp(b) P-l(S) B] u*(s) ds ~ f [YJtp(b) P-l(S) B] u(s) ds
a a

for all u E Qa • This yields the necessary representation (3.10) for u* E Q rx •

Before establishing sufficiency of (3.9) and (3.10), we observe that (3.10)
with YJ =1= 0 essentially determines a unique control. The matrix PCb) P-l(S)
as a function of s is a fundamental matrix solution of the adjoint system
X' = -XA(s) interpreted as an equation in the row-vector X (see [4]). Since
the system (3.4) is equivalent to the scalar equation (3.1), the homogeneous
adjoint system X' = -XA(s) is equivalent to the adjoint equation L*1> = 0,
with appropriate identification of solutions. In particular, the last column of
PCb) P-l(S), which is given by PCb) P-l(S) B, contains n linearly independent
solutions of L*1> = o. Thus, YJtp(b) P-l(S) B is just a nontrivial solution of
L *1> = 0, for any nonzero vector YJ. With the assumptions we have imposed
on L *, that it be a nonsingular nth order linear differential operator with
continuous coefficients on [a, b], nontrivial solutions YJtp(b) P-l(S) B of
L*1> = 0 can only have a finite number of isolated zeros in [a, b]. Only at
these points is sgn[1]tP(b) p-l(S) B] indeterminate. So, as claimed, u* is
essentially uniquely determined by (3.10).

Now suppose X E ota has a representation, (3.9) and (3.10), for some
nonzero vector YJ. Then u* maximizes J: [YJtp(b) P-l(S) B] u(s) ds with respect
to u in Qa • Invoking (3.7) again, we obtain YJt(X - Y) ~ 0 for all Yin ota •
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Thus YJ determines a support plane of ot~ , passing through the point X. So X
must be a boundary point of ota •

(iii) Let Cl'. > 0 and let U E Q a - Q~o. Consider X EO ot~ given by

X = PCb) P-l(a) Xo + rPCb) P--l(S) Bu(s) ds.
0(l

If X were a boundary point of ot~ , its associated control would be uniquely
determined by an expression (3.10), following the argument of part (ii). But
since u ¢ Q~o, u cannot be expressed in this form. So X must be an interior
point of ot~ .

(iv) Let 0 ~ Cl'. < f3. Since Qa C Qs, clearly ota C ots . Also, by the
argument of (iii), if X E ota is associated with control u, then U E Q s - Qso so
XE int ots .

(v) Let E > 0, and let 0 ~ Cl'. < f3. Denote 8 = f3 - lX. It suffices to
show that ots is contained in an E-neighborhood of ota when 8 is sufficiently
small. ota is always contained in an E-neighborhood of ots , by (iv). Consider
X in ots associated with control Us in Qs. Define Ua in Q~ by u,(s) = uris)
when IUs(s) I ~ Cl'., and ua(s) = Cl'. sgn uscs) when I us(s) I > Cl'.. By this construc­
tion II Ue - Ua II ~ 8. Let Z be the point in ot~ associated with control Ua .
Using (3.7) to represent X and Z, we obtain a bound on the Euclidean
distance 11 X - Z II between X and Z in Rn;

I X - Z I: ~rIIP(b) P-l(S) B I uSCs) - ua(s)1 ds
(l

~ 8r IIP(b) P-l(S) B II ds.
a

The bound is independent of the point X in ots , and it can be made less than
E by choosing 8 small.

(vi) Let Cl'. > 0 and suppose X E int otex • Fix E > 0 such that

By (v), we can fix a positive 8 such that the Hausdorff distance between 010:
and ota - a is less than E/2. We claim that {Z: II Z - XII < E/2} C 010:-8 .
Suppose not and let Y be a fixed point in {Z: II Z - X II < E/2} - otex - 8 •

Since otex - 8 is closed and convex there is hyperplane passing through Y that
does not intersect ota - 8 , i.e., there is a unit vector YJ such that YJt(y - W) > 0
for all W in 010:-8' Now consider the point y* == Y + (E/2) YJ. We have
II X - y* II ~ II X - Y I! + II y -- y* II < E, implying y* E ota • Further, for
any Winota _ 8 , II y* - Wfl 2 II(E/2)YJ + Y- W!1 2

==(E
2/4) + Y- WI: 2
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+ ETJt(y - W) > (E/2)2. Thus y* E Ot" and II y* - WII > E/2 for all
WE Ot"_6 , which contradicts the choice of~. Thus X E int Ot"-6 .

Lemma 1 is proved. Theorem 1, stated in Section 2 is now easily proven.

Proof of Theorem 1. Let CXo = inffeu II Lfll", (2.1). By construction of the
system, (3.4) and (3.5), and its association with the extremal problem (2.2),
CXo = inf{cx ~ 0: Xl E Ot,,}. By (iv) of Lemma 1, Xl E Ot" for all cx> CXo'

Since Ot" depends continuously on cx and Ot" is closed this implies Xl E Ot" .o 0

Suppose CXo > 0; when CXo = 0 the conclusions of the theorem are obvious
from the fact Xl E Ot" .o

Now Xl cannot be an interior point of Ot" , or else by (vi) Xl E Ot" -6 foro 0

some positive ~, contradicting the definition of CXo • Thus Xl is a boundary
point of et" . By (ii) of Lemma 1 and its proof, the control u* that attains Xl

o
is uniquely determined by (3.10). The associated solution X(t) of (3.4)-(3.6)
exists and is unique. The associated solutionfo of (3.1)-(3.3) with u = u* is
in U, it satisfies (2.2) and it is unique.

The characterization offo follows from the properties of u* given by (3.10).
By the remarks on the proof of (ii) in Lemma 1, u*(s) = CXo sgn[4>(s)], where
4> is a nontrivial solution of L *4> = O. Thus, there are a finite number of
points tl < t2 < ... < t k in (a, b), k ~ 0, where u* changes sign. These are
zeros of 4>. Excepting these points, i.e., for t E [a, b] - {tj}:=l , Lfo(t) = u*(t)
exists and I Lfo(OI = CXo ' Finally, if L * possesses Property T on [a, b], then 4>
can have at most n - 1 zeros, so k ~ n - 1. This completes the proof.

Theorem 2 follows as readily from properties observed in Lemma 1.

Proof of Theorem 2. Suppose f in U is a perfect spline with knots

in (a, b) and I Lfl = cx ~ CXo' Suppose k ~ n - 1. If L* possesses Property
T on [a, b] then there is a function 4> satisfying L *4> = 0 such that 4> changes
sign at each point tj in (a, b) for j = 1'00" k and 4> does not change sign at any
other point in (a, b) (see [7, p. 30]). By the argument of Lemma l(ii) there is
a nonzero vector TJ such that 4>(s) = TJtp(b) P-l(S) B. Since 4> changes sign
exactly at the points where Lf does, we obtain the representation

Lf(s) = cx sgn[±TJtP(b) P-l(S) B].

By (ii) of Lemma 1, this implies Xl is a boundary point of et" . In turn, (iv)
implies cx = CXo and the theorem is proved.

Theorem 3 is an immediate consequence of Theorems 1 and 2, so we can
omit a more detailed argument.

We adopt a constructive approach to obtain the results of Theorem 4.
With cx > CXo , we can already say from the preceding analysis that Xl E Ot" .



236 DONALD E. MCCLURE

The Bang-Bang Principle from control says then that Xl E Ol~o, which is part
of a conclusion that we want to draw. However, the Bang-Bang Principle
does not tell us about regularity properties of a Bang-Bang control u in Q~o

that will attain the state Xl . The constructive approach we follow will yield
this kind of information.

The construction of a perfect spline f in U, with I Lf(t) I =c a except at
knots starts by considering solutions X of (3.4) and (3.5) for which u(t) == a in
an interval to the right of t = a. We could as well start by fixing u(t) = -a to
the right of a, and the alternative construction would yield perfect splines
distinct from those obtained by the route adopted. This remark is at the root
of the last two statements of Theorem 4.

Fix a> 0 and let Ybe the unique solution on [a, b] of

Y' = A(t) Y + Ba; yea) = X O ' (3.11)

Associated with Y, we define attainable sets Ot(t) that describe points in Rn
attainable at time b starting from yet) at time t and applying a control from
Q~ to (3.4):

Ot(t) = {X(b) ERn: X( ) satisfies (3.4) on [t, b],

X(t) = yet), and u E Q~} for a :(; t :(; b. (3.12)

Properties of the set-valued function Ol(t) and its values are described in the
following lemma.

LEMMA 2. The set-valued function Ol(t) on [a, b] defined by (3.11) and
(3.12) has the following properties:

(i) Ol(a) = ol~ [Eq. (3.8)];

(ii) for each t in [a, b], Ol(t) is a compact convex subset of Rn;

(iii) if a :(; t :(; s :(; b, then Ol(s) c;;:; Ot(t);

(iv) with the Hausdorff metric on compact subsets of Rn, Ol(t) is a
continuousfunction on [a, b];

(v) if t < b, then int Ol(t) is nonempty;

(vi) if t < b and X E int Ol(t), then, for some positive S, X E int Ol(t + 0).

Proof Except for property (iv), all parts are proved by arguments
completely analogous to those used for the corresponding parts of Lemma 1.
Therefore we only present the argument for part (iv).

Let € > 0 and let a :(; t < s :(; b. Denote 0 = s - t. It suffices to show
that Ol(t) is contained in an €-neighborhood of Ol(s) when 0 is sufficiently



PERFECT SPLINES AND EXTREMAL PROBLEMS 237

small. Consider X in aCt) associated with control U on [t, b]. Define u* by
U*(T) = IX for t ~ T < sand U*(T) = U(T) for s ~ T ~ b. Let Z be the point
in aCt) associated with control u*. Also Z E a(s), since U*(T) = IX on [t, s).
Using (3.7) to represent X and Z, we can bound the distance II X - Z!I ;

II X - Z II ~ CIIP(b) P-l(T) Bill U(T) - u*(T)1 dT ~ k . 8.
-t

The integral in the bound collapses to the interval [t, s) since U and u* agree
elsewhere; the constant k in the second part of the bound can be chosen
independent of X in Ol(t), since I U(T) - u*(T)1 ~ 2IX and since

IIP(b) P-l(T) B II

is uniformly bounded on [a, b]. Uniform continuity of Ol(t) on [a, b] follows
immediately from this bound.

In passing we note that the characterization of boundary points of Ol~ in
Lemma 1 carries over to an analogous characterization of boundary points
of aCt). All that is changed is the interval over which control is not fixed.
a(t) is to the interval [t, b] as Ol~ is to the interval [a, b].

Lemma 2 provides the tools for the proof of Theorem 4.

Proof of Theorem 4. Fix IX > IXO ' By Theorem 1, Xl E Ol~ and by
o

Lemma 1 (iv), Xl E int Ol~. By Lemma 2 (i) and (vi), Xl E int aCt) for t in a
neighborhood of a. Define

tl = lub {t E [a, b] : Xl E int Ol(t)}.

Clearly a < tl ~ b.
We claim that Xl is a boundary point of a(tl)' From the definition of tl

and Lemma 2(iii), Xl E Ol(t) for a ~ t < tl . By (iv) and since a(tl ) is closed,
therefore Xl E a(tl)' If Xi were an interior point of Ol(tl), then by (vi), Xl
would be an interior point of a(tl + 8) for some positive 8, contradicting
the definition of t l . Thus, Xl is a boundary point of Ol(tl ).

Suppose tl < b. If L * possesses Property T this is necessarily true, since
otherwise Y( ) would determine a solution of the interpolation problem
with no knots in (a, b), contradicting Theorem 2.

Now use Lemma l(ii) and the remark that relates the sets aCt) to the sets
a~ of Lemma 1. Since Xl is a boundary point of a(tl), there is a unique
control u on [tl , b] of the form

U(s) = IX sgn[7)t PCb) P-l(S) B),
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where 7] is a nonzero vector, such that

Xl = PCb) P-1(t1) Y(t1) +rPCb) P-1(S) Bu(s) ds.
1,

Define u*(s) = ex for a ~ s < t1 and u*(s) = u(s) for t1 ~ s ~ b. The first
componentf of the solution X on [a, b] of X' = AX + Bu*, X(a) = Xo , is a
perfect spline on [a, b] satisfying the interpolation conditions at a and b. The
function f has no knots in (a, (1), and it has a finite number of knots in
(t1 ,b) coinciding with the isolated points where 7]IP(b) P-1(S) B changes
sign. Further, by the construction, I Lf I =:0 ex except at the knots.

If L * possesses Property T on [a, b], then by Theorem 2, f must have at
least n knots in (a, b). From the form of u*(s) on (t1 , b) and the argument of
Lemma I (ii), f has at most n - I knots in (t1 , b). Since f has no knots in
(a, t1) it must have a knot at t1 and precisely n - I knots in (t1 , b). Thusfhas
exactly n knots in (a, b).

Up to a sign change in Lf in a neighborhood of t = a, f is unique in this
regard. For suppose g is a perfect spline satisfying ILg I == ex and fitting the
interpolation conditions. Let Sl denote the smallest knot of g in (a, b), and
suppose Lg ,~, ex on (a, Sl)' If Sl < t1 , then Xl E int a(s[) and by the argument
of Theorem 2, g would necessarily have at least n knots in (Sl' b).
Adding the knot at Sl , g necessarily has at least n + I knots in (a, b). On the
other hand, if Sl > t 1 we obtain a contradiction to the uniqueness of u(s)
defined above on [t1 , b]. The uniqueness of u(s) dictates that a perfect spline
satisfying the conditions imposed on g must have a knot in (a, t1 ], since
otherwise there would be two distinct controls on [t1 , b] satisfying I u(s)[ ~ ex

and attaining state Xl at b from Y(t1) at t1 . Thus if g has exactly n knots in
(a, b) its first knot must by t1 ; it agrees withf on [a, t1] and the uniqueness
of the control u on [11 , b] establishes the uniqueness ofj:

Similarly, we can construct a unique perfect spline with exactly n knots in
(a, b), satisfying the interpolation conditions and I Lf [ == ex, and conditioned
by Lf(t) = -ex in a neighborhood of a. The theorem is proved.

4. RESULTS OF FISHER AND JEROME

Theorem 4 readily applies to a generalization of the main result of Fisher
and Jerome [2]. We briefly describe their problem and results.

Extremal problems like (2.1) and (2.2) related to a nonsingular nth order
linear differential operator are considered. However, much more general
interpolation conditions are considered. We adopt the assumptions of
Section 2 regarding the regularity of the coefficients ave )of L.
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To describe the interpolation conditions, let a = Xl < X 2 < ... < X rn = b
be m points in [a, b]. Associated with each of the points Xi, introduce
linear functionals Lij on wn •oo defined by

n-l

Lid= L a~"/Dl(xi)'
v=o

for j = 1,... , k i and i = I, ... , m;

the ali) denote prescribed real values such that, for each fixed i, the k i n-tuples
(al~),... , ali-l»), I ~ j ~ k i , are linearly independent, and each k i satisfies
1 ~ k i ~ n. Let rij be prescribed real numbers and define the class u* by

U* = {IE Wn.oo : Lijf = rij, for 1 ~j ~ k i and 1 ~ i ~ m}.

The linear independence assumption on the functionals Lij assures that U* is
nonempty.

Consider L operating on u* and define

lXO* = inf II Lflloo .
fEU·

(4.1 )

The first concern is to establish existence offo in U* for which the infimum in
(4.1) is attained i.e., for which

II Lfo 1100 = lXo*, fo E U*. (4.2)

The first theorem of [1] addresses this question.

THEOREM 5. The minimization problem, (4.1) and (4.2), has a solution gin
wn.oo and the class S(U*) of all such solutions g for a fixed choice of u* is a
convex set. Let Sl(U*) = S(U*) and, for 2 ~ i ~ m, let SlU*) consist of all
solutions to the minimization problem

lXi-l = inf {II Lg IkXl(xi_l.a:j): g E Si-l(U*)},

Then each Si(U*) is nonempty; in particular, Srn(U*) = n::l SlU*) is non­
empty.

(Notation II IILoo(xi-l.a:
i
) is adopted to make clear the interval to which the

norm is restricted.) The successive construction of the classes Si(U*) produces
solutions of (4.2) that are "locally optimal" on subintervals (Xi-l , Xi)' The
characterization of solutions obtained by this construction follows additional
assumptions on the operator L and the functionals Lij .

Regarding L, Fisher and Jerome assume

(I) a" E Cn-v[a, b] and L* possesses Property Ton [a, b].
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A uniqueness characterization of solutions to the extremal problem relies
on the further assumption concerning the functionals L i;. Let no be the
largest positive integer with the property that for any no consecutive points
among Xl, ... , xm the sum of the associated integers k i does not exceed n.
Necessarily, 1 :c:;: no :c:;: n. Regarding the L ij , assume

(II) (a) For every no consecutive points XA ,... , X,\+n -1 and prescribed
o

values Yi; there is a function rP in the null space of L satisfying Li;rP = Yij for
1 :c:;: j :c:;: k i and ,\ :c:;: i :c:;: ,\ + no - 1;

(b) for any no + 1 consecutive points XA,... , X,\+n for which
L:~~;" k i ~ n-+- 1 the equations LijrP = 0 for 1 :c:;: j :c:;: k i and'\ ~ i :c:;: ,\ + no
and rP in the null space of Limply rP =~ O.

The following theorem is the principal characterization result of Fisher and
Jerome [1].

THEOREM 6. Suppose (I) and (II) are satisfied. Then there is a fundamental
interval J = [X\.XA

2
+n

O
]' for some 1 :C:;:'\1 :c:;: '\2 :c:;: m - no with L:~::;o k i ?

n + 1 such that any two solutions of (4.2) agree on J. Moreover, if g E S(U*),
then I Lg ! = <xo* a.e. on J. If g* is chosen as in Theorem 5, then g* is unique
in Sm( U*). Moreover, g* has the property that I Lg* I is equivalent to a step
function on [a, b] with discontinuities restricted to X2 , ... , X m-1 and, on (Xi, Xi+1)'
i = 1,... , m - I, Lg* is equivalent to a step function with at most n - 1 dis­
continuities on each such interval.

This theorem establishes existence of what is reasonably termed a "piece­
wise perfect-spline" solution ofthe extremal problem. Further, the characteri­
zation determines an interval of uniqueness and bounds the number of knots
of a solution on each subinterval (Xi, Xi+1)' It will be clear in the following
discussion that our Theorem 1 assures existence of a piecewise perfect spline
solution of (4.2) even without assumptions (1) and (II). The more precise
characterizations of Theorem 6, however, rely on these assumptions.

Building on these results, Fisher and Jerome [2] construct global perfect
spline solutions of (4.2) for the particular case L = Dn. It is this specialization,
in particular, that we relax. They prove the following result.

THEOREM 7. There is a perfect spline solution g to the extremal problem
(4.2) when L = Dn, provided the functionals L i; satisfy hypothesis (II). g has
the property that Dng = ±<Xo* except at afinite number ofpoints of discon­
tinuity ofDng, which cannot exceed n in number on (Xi' Xi+1) for each i = 1, ... ,
m-l.

We prove the following generalization.
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THEOREM 8. There is a perfect spline solution g to the extremal problem
(4.2). g has the property that Lg = ±(Xo* except at a finite number ofpoints
ofdiscontinuity ofLg. Ifassumption (I) is satisfied, i.e., ifL *possesses Property
T on [a, b], then the number of knots of g in each interval (Xi' Xi+l), for 1 ~
i ~ m - 1, need not exceed n. (Further, if assumption (II) is satisfied by
the functionals L ij then there is a fundamental subinterval J = [x, ,x, +n ]

1 2 0

of uniqueness ofg as described in Theorem 6.)

Proof Let fo be any solution of (4.1) and (4.2). Its existence is assured
by Theorem 6 of Fisher and Jerome. Fix i between 1 and m - 1 and con­
sider the restriction of fo to (Xi, Xi+I)' Define x~+l) = f~)(Xi) and xl"+ll =
f~)(xi+1)' Consistent with the notations of Section 2, define

U = {fE Wn.oo:jlv)(x
i
) = xbv+!) andjlvl(x

i
+I) = xr+!l for v = 0,... , n - I}.

Also define (xo = inftEu II Lfll£ (x x ). Certainly (xo ~ (XO*, since fo is a
00 i' i+l

function in U with II Lflloo = (xo*. If (xo = (XO *, then Theorem 1 assures that
fo is the unique solution in U of II Lfo II = (xo and fo is a perfect spline on
(Xi, Xi+l)' If (xo < (xo*, then Theorem 4 assures the existence of a perfect
spline gi in U, which is not unique, satisfying I Lgi 1= (Xo* on (x;, Xi+l)

except at knots of gi .
We can thus construct a perfect spline g; on each subinterval (x; , Xi+l) so

that II Lgi 11£",(x
i
.x,+l) = (xo*. Define g on [a, b] by get) = gi(t) for Xi ~ t ~

Xi+l and 1 ~ i ~ m - 1. Sincefo E en - I[a, b], also g E en - I[a, b]. Further, g
is a perfect spline on [a, b] and I Lg I = (xo* except at knots of g. This
establishes the existence statement of Theorem 8.

When assumption (I) is imposed, the limit on the number of knots that g
must have on each subinterval (Xi' Xi+l) follows from Theorem 4.

The last statement of the theorem is from the characterization of [2,
Theorem 6].
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